Domains we research on

Smart Mobility

Advancing the state-of-AI research in the area of road safety to reduce accidents & fatalities in the country.

Healthcare

Developing new AI based solutions to make healthcare accessible for everyone.

Ongoing projects running under aegis of the institute

Smart Mobility.

IDD - Detection

40,000 images with bounding box annotations; released 2018.

Learn More
Smart Mobility.

IDD - Segmentation

20,000 images and fine semantic segmentation annotation (14K Train, 2K Val, 4K Test) from 350 drive sequences.

Learn More
Healthcare

CSIR-IIITH-Intel COVID Project

The main aim of this project is to deploy faster & better method for COVID testing as well as develop risk stratification algorithms.

Learn More

Events

While several datasets for autonomous navigation have become available in recent years, they have tended to focus on structured driving environments.  The dataset consists of images obtained from a front facing camera attached to a car. IDD is a novel dataset for road scene understanding in unstructured environments. It consists of 20,000 images, finely annotated with 34 classes collected over 200 drive sequences on Indian roads. The label set is expanded in comparison to popular benchmarks such as Cityscapes, to account for new classes.

The challenge will have the following benchmarks involving domain adaptation from around 20k samples of Mapillary, Cityscapes (fine annotations only), Berkeley Deep Drive, and GTA as the source dataset (S) to the IDD as target dataset (T).